Beginners‎ > ‎


Brewing Beer

All beers are brewed using a process based on a simple formula. Key to the process is malted grain—depending on the region, traditionally barleywheat or sometimes rye. (When malting rye, due care must be taken to prevent ergot poisoning (ergotism), as rye is particularly prone to be infected by this toxic fungus.)

Malt is made by allowing a grain to germinate, after which it is then dried in a kiln and sometimes roasted. The germination process creates a number of enzymes, notably α-amylase and β-amylase, which convert the starch in the grain into sugar. Depending on the amount of roasting, the malt will take on a dark colour and strongly influence the colour and flavour of the beer.

The malt is crushed to break apart the grain kernels, expose the cotyledon which contains the majority of the carbohydrates and sugars, increase their surface area, and separate the smaller pieces from the husks. The resulting grist is mixed with heated water in a vat called a "mash tun" for a process known as "mashing". During this process, natural enzymes within the malt break down much of the starch into sugars which play a vital part in the fermentation process. Mashing usually takes 1 to 2 hours, and during this time various temperature rests (waiting periods) activate different enzymes depending upon the type of malt being used, its modification level, and the desires of the brewmaster. The activity of these enzymes convert the starches of the grains to dextrins and then to fermentable sugars such as maltose. In smaller breweries, the mash tun generally contains a slotted "false bottom" or other form of manifold which acts as a strainer allowing for the separation of the liquid from the grain.

A mash rest from 49-55°C (120-130°F) activates various proteases, which break down proteins that might otherwise cause the beer to be hazy. But care is of the essence since the head on beer is also composed primarily of proteins, so too aggressive a protein rest can result in a beer that cannot hold a head. This rest is generally used only with undermodified (i.e. undermalted) malts which are decreasingly popular in Germany and the Czech Republic, or non-malted grains such as corn and rice, which are widely used in North American beers. A mash rest at 60°C (140°F) activates β-glucanase, which breaks down gummy β-glucans in the mash, making the sugars flow out more freely later in the process. In the modern mashing process, commercial fungal based β-glucanase may be added as a supplement. Finally, a mash rest temperature of 65-71°C (149-160°F) is used to convert the starches in the malt to sugar, which is then usable by the yeast later in the brewing process. Doing the latter rest at the lower end of the range favors β-amylase enzymes, producing more low-order sugars like maltotriosemaltose, and glucose which are more fermentable by the yeast. This in turn creates a beer lower in body and higher in alcohol. A rest closer to the higher end of the range favors α-amylase enzymes, creating more higher-order sugars and dextrins which are less fermentable by the yeast, so a fuller-bodied beer with less alcohol is the result. Duration and pH variances also affect the sugar composition of the resulting wort.[1]

After the mashing, the resulting liquid is strained from the grains in a process known as lautering. Prior to lautering, the mash temperature may be raised to about 75 °C (165-170 °F) (known as a mashout) to deactivate enzymes. Additional water may be sprinkled on the grains to extract additional sugars (a process known as sparging).

At this point the liquid is known as wort. The wort is moved into a large tank known as a "copper" or kettle where it is boiled with hops and sometimes other ingredients such as herbs or sugars. The boiling process serves to terminate enzymatic processes, precipitate proteins, isomerize hop resins, concentrate and sterilize the wort. Hops add flavour, aroma and bitternessto the beer. At the end of the boil, the hopped wort settles to clarify it in a vessel called a "whirl-pool" and the clarified wort is then cooled.

The wort is then moved into a "fermentation vessel" where yeast is added or "pitched" with it. The yeast converts the sugars from the malt into alcohol, carbon dioxide and other components through a process called fermentation. After one to three weeks, the fresh (or "green") beer is run off into conditioning tanks. After conditioning for a week to several months, the beer is often filtered to remove yeast and particulates. The "bright beer" is then ready for serving or packaging.

There are four main families of beer styles determined by the variety of yeast used in their brewing.


All Grain Brewing (Sample Process)